
In a previous article (1), we dis-
cussed how cyclic voltammetry
could be used to achieve a qualitative
understanding of electrochemical
mechanisms, particularly those that
involve chemical reactions coupled
to the electron transfer reaction(s).
However, since the effects of mass
transport, electron transfer kinetics
and the kinetics of coupled chemical
reactions on a cyclic voltammogram
cannot generally be separated, the
extraction of quantitative data from
a cyclic voltammogram typically re-
quires comparison of the experimen-
tal data with simulated data or
predictions of a theoretical model.
The simulated data are generated by
software that requires input of the
reaction mechanism, and the appro-
priate parameters. One approach that
often has been used for calculation
of theoretical voltammograms is the
method of finite differences (2-5),
which is the subject of this paper.
Particular reference is made to

DigiSim, the BAS simulation pro-
gram for cyclic voltammetry.

Finite difference methods re-
quire that the  electrochemical ex-
periment be discretized into space
and time grids. The space grid is
generated by dividing the solution in
which concentration changes occur
during the experiment into small,
discrete volume elements. During
the simulation, the concentrations of
all the species involved in the elec-
trochemical reaction are calculated
for each of the volume elements (F1).
Since  these  concentrations change
during the experiment, the concen-
tration calculation must be carried
out at many time points during the
experiments. Therefore, the electro-
chemical experiment is described by
knowing the concentrations in all the
volume elements at each of the se-
lected time points.

The accuracy of the simulation
depends upon the size of the time and
space grids; that is, the number of

volume elements and the number of
time points. Increasing these num-
bers increases the accuracy of the
simulation, but also increases the
time required for the simulation. The
selection of these numbers (i.e., how
the grids are set up) is discussed in
more detail below. The other aspect
discussed in this article is the method
used for calculation of the concentra-
tions (the explicit and implicit meth-
ods), and their advantages and
disadvantages.

Optimization
of the Space Grid

In a typical cyclic voltammetry ex-
periment, the concentration changes
are greatest at the electrode surface,
and decrease with increasing dis-
tance from the electrode surface.
Therefore, a large number of volume
elements  are required at  the elec-
trode surface in order that the
changes of concentration with time
and distance are described accu-
rately, but fewer are needed at large
distances from the surface. The most
efficient way to achieve this distribu-
tion is to use an exponentially ex-
panding grid (as  is shown in F1)
(6,7). The thickness of the first ele-
ment (that adjacent to the electrode
surface) is ∆x, and the rate of expo-
nential expansion is defined by β.
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The effect of β is illustrated in F2,
which compares concentration pro-
files generated by the BAS simula-
tion software DigiSim for β = 0.5 (a)
and 0.2 (b); the finer grid (β = 0.2)
leads to a smoother profile.

The other parameters that deter-
mine the number of volume elements
are Xmax, which is the total distance
described by the simulation, and ∆x.
Xmax is given by the formula:

where D is the largest diffusion co-
efficient specified for the simulation,
and t is the time required for the
experiment (2). The optimum value
for ∆x is also dependent upon the
diffusion coefficient, as well as ∆t
(the interval between sampling
times). D, ∆x, and ∆t are related by
the following equation:

where Dm is referred to as the model
diffusion coefficient. The default

value for Dm in DigiSim is 10. ∆t is
calculated from the user-specified
value of the scan rate, and the size of
the potential step. For example, let us
consider a simulation with a scan
rate of 1 V s-1, a potential range be-
tween -0.3 V to + 0.3 V, a potential
step of 0.005, with all species having
a diffusion coefficient of 1 x 10-5 cm2

s-1. Therefore, ∆t = 0.005 s, and ∆x
= 7.07 x 10-5 cm for Dm = 10.

The magnitude of ∆x requires
special consideration if the simu-
lated mechanism involves a chemi-
cal reaction. A typical concentration
profile for an EC mechanism (i.e.,
the electron transfer reaction O + e =
R is followed by a chemical reaction
R = P) is shown in F2. In addition to
changes in concentration due to dif-
fusion, there are also changes in con-
centration due to the chemical
reaction. The layer in which the con-
centrations are perturbed by the
chemical reaction is referred to as the
reaction layer, and it is important that
this  layer contain enough volume
elements to describe accurately the
changes in the concentrations due to

the chemical reaction. The thickness
of this layer (µ) is typically ex-
pressed in terms of ∆x, and the de-
fault setting in DigiSim is that µ2 =
50(∆x)2; that is, the reaction layer
contains about 7 volume elements.

µ is defined by the equation

where DR is the diffusion coefficient
of R, and k2 and k-2 are the rates of
the forward and reverse chemical re-
actions. A consequence of these re-
lationships is that the magnitude of
∆x must decrease with increasing k
in order to maintain the accuracy of
the simulation. If ∆t is not varied, the
magnitude of Dm must also increase.
In DigiSim, the minimum value of
Dm is 10, unless the value of k re-
quires a larger value. To illustrate the
relationships, let us extend the calcu-
lations given above to include a
chemical reaction with an equilib-
rium constant of 1000 for various
values of the forward rate constant k2

of the B = C forward reaction (note
that k-2 is negligible in comparison
with k2, and hence is not included in
the calculation of µ). For Dm = 10,
∆x = 7.07 x 10-5 cm; therefore, this
value for Dm is adequate if µ needs
to be 5 x 10-4 cm or larger. This value
of µ corresponds to a k2 value of 40
s-1. For larger values of k2, ∆x must
be smaller than 5 x 10-4 cm, and
hence a larger value is required for
Dm (if ∆t is to remain constant). For
example, if k2 = 100 s-1, ∆x = 4.5 x
10-5cm, and Dm = 25.

The default space grid parame-
ters values set by DigiSim should be
optimal for a planar electrode ge-
ometry for most mechanisms. Al-
though decreasing β from its default
value of 0.5 improves the smooth-
ness of the concentration profiles,
there is typically little improvement
in the accuracy of the simulation for
values of β less than 0.5. However,
there are exceptions. The simulated
cyclic voltammogram for a catalytic
mechanism (O + e = R, R + S = O +
T, with the diffusion coefficients of
S and T being an order of magnitude

F2

DigiSim concentration
profiles for an EC
mechanism
(O + e = R, R = P)
for β = 0.5 (a)
and 0.2 (b).
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smaller that those of O and R) is
shown in F3 for β = 0.5 (a) and β =
0.1 (b). The uneven appearance of
the voltammograms in F3a suggests
that it may not be accurate, and this
is confirmed by the improvement
achieved by decreasing the value of
β.

Calculation of Concentrations

There have  been two general ap-
proaches used for finite difference
simulations — the explicit finite dif-
ference (EFD) method, and the im-
plicit finite difference (IFD) method.
(DigiSim is based on an IFD
method.) These will be discussed in
turn.

The EFD method is simpler, both
conceptually and mathematically. It
is based on the calculation of con-
centrations at time t + ∆t from con-
centrations at time t. Since the
starting concentrations are known

for all the volume elements, the con-
centrations at other time points can
be calculated. However, this simplic-
ity is accompanied by considerable
limitations. The most fundamental
limitation is that, during one time
period ∆t (or iteration), any change
in concentration can only propagate
to the next volume element (this is
referred to as “propagational inade-
quacy” (8)). For example, if there are
any changes in concentrations at the
electrode surface during the first it-
eration (e.g., due to charge transfer),
the EFD method will only calculate
changes in concentration in the first
volume element. Since perturbations
due to diffusion occur over a distance
x = 6(D∆t)1/2, the EFD method can
only be accurate if x � ∆x for the first
iteration (first time element). Further
restrictions are placed on the EFD
method by the requirement that Dm

must be less than 0.5 (for numerical
stability of the calculation). The ef-

fect of these limitations can be illus-
trated using the simulation example
discussed above; if k2 = 100, ∆x = 4.5
x 10-5 cm, ∆t = 1 x 10-4 s, and the
number of time points = 12,000.
Hence, even for this relatively low
value of k2, a large number of time
points is required, and such a simu-
lation would require about 80s on a
486 DX 33 MHz. Furthermore, for
each order of magnitude increase in
k2, the number of time points re-
quired for the EFD method, and the
time required for the simulation, also
increase by an order of magnitude.
Therefore, the EFD method is not
practical for simulation of mecha-
nisms with even moderately fast
chemical reaction  kinetics.  (It has
been suggested that a smaller value
should be used for µ (9). Although
this will decrease the time required
for the simulation, it will also de-
crease the accuracy.)

Variations of the EFD method
have been developed, based on the
Hopscotch (10) and the DuFort-
Frankel (11) algorithms. The in-
creased stability  of these methods
has permitted the use of larger values
of Dm, with a corresponding de-
crease in the computational time re-
quired, but very small values of ∆t
are still required for systems with
large kinetic parameter values.

The IFD method calculates con-
centrations at time t + ∆t using the
concentrations at t + ∆t and t. It is
less intuitive, and more  computa-
tionally complex, but it is more sta-
ble, and more accurate than the EFD
method. However, early studies
based on the two common IFD algo-
rithms (Lassonen (12) and Crank-
Nicolson(13)) concluded that,
despite their advantages, IFD meth-
ods were too inefficient to be suitable
for mechanisms involving chemical
reactions coupled to electron transfer
reactions. However, more recently,
Rudolph developed an IFD method
(referred to as the fast implicit finite
difference or FIFD method) that was
considerably more efficient than pre-
vious attempts (4,14,15). In addition
to the stability and accuracy of IFD
methods,  the  FIFD method  is not

F3

DigiSim simulations
for a catalytic
mechanism
(O + e = R,
R + S = O + T)
for β = 0.5 (a)
and 0.05 (b).
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restricted to small values of ∆t, and
this leads to a dramatic improvement
in efficiency relative to the EFD
methods, particularly for systems
with large kinetic rate constants.

The FIFD method has been ap-
plied to both the Lassonen and
Crank-Nicolson algorithms. The
Crank-Nicholson algorithm had bet-
ter accuracy, but it was more compli-
cated to program than the Lassonen
algorithm, and, more importantly, it
was less stable, particularly for sec-
ond order equations. In addition, the
accuracy of the Lassonen algorithm
was improved significantly by using
the Richtmeyer modification (4,16).
Therefore, the modified Lassonen
algorithm is the algorithm of choice
for the FIFD method.

The stability and efficiency of
the FIFD method makes it suitable as
the basis for a general simulator; that
is, a simulator that can be used for
virtually any mechanism, and that
can run efficiently for a wide range
of kinetic parameter values. A study
that compared various finite differ-
ence simulation programs  showed
that, for a given square scheme
mechanism, a basic EFD program
(developed by Gosser (9)) required
24 hours on a mainframe computer;
a modified EFD  method (the  fast
quasi-explicit method by Feldberg
(17)) required six minutes on  the
mainframe computer, 30 seconds on
a supercomputer, and 45 minutes on
a 386 SX PC; whereas the FIFD re-
quired 30 seconds on the PC (18). A
latter study on the same mechanism
using DigiSim (which is based on a
later version of the FIFD method)
showed that only 8 seconds were
required using a 486DX 33 MHz PC
(19). A more recent comparison of
DigiSim with simulation programs
based on methods other than the fi-
nite difference method showed that
DigiSim was significantly faster
than these other methods (5).

This article has provided a brief
description of the  parameters  that
need to be considered when setting
up a simulation. Although the con-
straints of these parameters can be
severe for some mechanisms, these

can be readily accommodated by the
FIFD method upon which DigiSim
is based. DigiSim can therefore be
considered to be a general simulator,
as it can be used for any redox
mechanism (20) that can be de-
scribed in terms of single or multiple
electron transfer reactions and first-
or second-order chemical reactions.
In addition, a wide range of kinetic
parameter values can be handled ef-
ficiently. The combination of
DigiSim with the computing capa-
bilities of modern day PCs means
that only a few seconds are now re-
quired for simulations that, even ten
years ago, required hours of comput-
ing time.
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