
A Review of Parameters
Describing Electrolyte
Solutions

When two electrodes are immersed
in a solution and a potential is ap-
plied across them, a current will be
produced in the external circuit that
connects the two electrodes. The
mechanism of electrical communi-
cation between the two electrodes in
solution is the movement of ions in
the solution. When no appreciable
solution electrolysis occurs, the
magnitude of the current observed
generally obeys Ohm’s Law:

E=iR
EQ1

where E is the applied potential, i is
the current measured, and R is the
resistance of the solution between
the two electrodes.

Solution Resistance
It is the quantity R (in one form

or another) that is of interest in the
present discussion. The higher the

concentration of ions present in the
solution, the lower R will be. Osten-
sibly “molecularly pure” water has a
pH value of 7 and hence contains
1×10-7 Molar OH- ions as well as
1×10-7 Molar H+ ions (the latter pre-
sent in the form of H3O+, H5O2

+, …).
If a strong electrolyte (i.e., fully dis-
sociable salt) like KCl is dissolved in
water, the number of ions per unit
volume increases and the solution
resistance R is lowered, thus increas-
ing the instantaneous current meas-
ured for a part icular applied
potential. Therefore, current can be
related to the concentration of ions
in a particular solution. However, the
distance between the electrodes, the
surface area of the electrodes, and
the identity of the ions also affect R.

Solution Conductance
The reciprocal of solution resis-

tance is called conductance, symbol-
ized by the letter S (or L).
Conductance is expressed in S.I.
units called siemens (S or Ω-1), al-
though older literature may refer to
an  equivalent  unit  called  the mho

(Ω-1). As discussed above in the con-
text of resistance, the measured con-
ductance for a solution is related to
the distance between the electrodes
(d) and the microscopic surface area
(geometric area × roughness factor)
of each electrode (A; assumed iden-
tical for the two electrodes), as well
as the ionic concentration. These pa-
rameters are interrelated by (1):

Conductivity
The quantity κ, above, is called

conductivity and it contains all of the
chemical information available from
the measurement (e.g., concentra-
tions and mobilities of the ions pre-
sent). The ratio d/A is a constant for
a particular measurement cell, and is
hence referred to as the cell constant,
θ (2). Therefore,

κ=SΘ
EQ3

The conductivity, κ, is an intrinsic
property of a solution, rather than a
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property of the conductance cell
used. However,  for  detection pur-
poses in liquid chromatography or in
determination of equivalence points
during titrations, only relative
changes are of interest (rather than
absolute values); hence, the conduc-
tance, S, maybe be reported instead
of κ.

Mobility
It is important to realize that con-

ductance (and conductivity) values
contain more information than sim-
ple ion concentrations. That is, the
measured conductivity for a solution
of 1 Molar HCl will be substantially
different than for 1 Molar KCl. This
fact arises because protons are much
more mobile in solution than potas-
sium ions. Such differences may be
quantified by considering the pa-
rameter called the mobility (u) of an
ion. The mobility is essentially that
part of the conductivity that is inde-
pendent of concentration. In an ideal
case, the mobility of an ion “i” de-
pends on the charge on the ion (zi),
its solvated radius (Ri), the viscosity
of the solvent (η) and the elementary
charge constant (e) according to (3):

Conductivity and Concentration
The experimentally determined

conductivity reflects contributions
from all ions present in solution that
are mobile and can support the cur-
rent. Conductivity can be written in
terms of the mobilities of all of the
ions present (3):

where F is the Faraday constant
(96,485 C/mol), and Ci is the con-
centration of ion “i” in mol/cm3. The
significance of EQ5 is that it shows
that conductivity reflects the identity
(charge and mobility) of all ions pre-
sent in solution, as well as their con-
centrations. This is the principle that
puts conductivity measurements in
the realm of analytical chemistry,
since there is a linear relationship
between a measurable quantity (κ)
and concentration.

Molar Conductivity
Since conductivity is concentra-

tion dependent, measured values for
different solutions are not easy to
compare directly. For this reason, a
quantity called the molar conductiv-
ity (or sometimes equivalent con-
ductivity) is used (2,3). The molar
conductivity is symbolized by Λ,
and it is defined as the solution con-
ductivity (κ) normalized by the total
ionic concentration (C):

In this context, total ionic con-
centration means “Molar concentra-
tion of positive charges” (or negative
charges) in solution,  expressed  in
units of mol/cm3.

Strong vs. Weak Electrolytes
In an ideal case, the molar con-

ductivity experimentally determined
for a compound would be the same,

regardless of the actual concentra-
tion of the solution used for the
measurement. For example, al-
though the values of κ for solutions
prepared to be 0.1 Molar and 1.0
Molar in KCl would be different, Λ
should  be the  same in  each  case,
since κ has effectively been normal-
ized for the difference in concentra-
tions. In practice, however, most
compounds  that dissolve in water
and undergo ionization behave dif-
ferently in highly dilute solutions
compared to even moderately con-
centrated solutions (3). Compounds
that exhibit molar conductivities that
do not change significantly with con-
centration are referred to as strong
electrolytes, and include salts such as
KCl. Other compounds such as ace-
tic acid are nearly completely ion-
ized at low concentrations, but are
incompletely ionized at higher con-
centrations. This class of compounds
is known as weak electrolytes. Ex-
perimental data (3) for KCl and ace-
tic acid are plotted in F1 to illustrate
the severity of this effect.

Limiting Molar Conductivity
For  comparison of  conductivi-

ties  of dissimilar compounds, the
most useful quantity to consider is
the limiting molar conductivity, Λ0.
This parameter represents the molar
conductivity for a compound that
would hypothetically be measured in
the limit of infinite dilution (i.e., the
y-axis intercepts of plots like those
in F1). In practice, such values are
obtained by fitting experimental data
to an equation known as
Kohlrausch’s Law (3):

The coefficient K depends pri-
marily on the type of the electrolyte
(e.g., 1:1 or MA, 2:1 or M2A, etc.),
rather than its specific chemical
identity (3). In any event, experimen-
tal values of Λ have been carefully
determined for many salts as a func-
tion of concentration in very dilute
solutions, and the intercept values of
the resulting plots obtained. In ex-
amining such data, it was discovered

F1

A plot of concentration vs.
molar conductivity
measured for a typical
strong electrolyte (KCl)
and for a weak electrolyte
(CH3COOH). (Adapted
from reference 3.)
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that Λ0 for any electrolyte can be
expressed as the sum of independent
contributions  from the constituent
cations and anions present. This fact
is now known as Kohlrausch’s Law
of the Independent Migration of Ions
(3):

Λ0= ν+ λ0
+ + ν- λ0

-

EQ8

In EQ8, ν+ and ν- represent
stoichiometric coefficients for the
cation and anion in the electrolyte,
respectively. For example, for
K4Fe(CN)6, ν+ = 4 and ν- = 1, since
there are 4 K+ ions present for each
Fe(CN)6

4- ion present in solution.

Limiting Ionic Molar
Conductivities

Next, we must consider the
meaning of the quantities denoted by
λ0

+ and λ0
- in EQ8. These quantities

are known as limiting ionic molar
conductivities, since they represent
the contributions to the total solution
conductivity made per mole of each
ion present in a dilute solution. It is
these λ0 values that are tabulated in
reference books such as the CRC
Handbook of Chemistry and Physics
(4) and text books (2,3). Values for a
few common ions are shown in T1.
The data presented are for a tempera-
ture of 25 °C, and are limiting ionic
molar conductivities, as opposed to
the limiting ionic equivalent conduc-
tivities reported elsewhere (3). The
molar and equivalent values are in-
terconver tible through the
stoichiometric coefficient ν defined
above. (IUPAC has recommended
discontinuation of the use of equiva-
lent quantities.) Note that reference
4 tabulates data for a limited number
of ions determined for a variety of
other temperatures. Alternatively, a
temperature coefficient (5):

is customarily assumed (1) for all
ions except H+ (0.0139 deg-1) and
OH- (0.018 deg-1). When λi

0 at 25 °C
and α are known, the value of λi

0 at
some other temperature, T, can be
estimated by (5):

λ0
i,T

=λ0
i,25°C [1+α(T-25°C)]

EQ10

Reference 6 includes data for many
of the same ions listed in T1 when
dissolved in non-aqueous solvents.

Examples of Use of Tabulated
Values

To end this section, we present a
few sample calculations to illustrate
the use of data in T1.

Λ0 for Acetic Acid. We can cal-
culate the limiting molar conductiv-
ity of a solution of acetic acid by

Cation λ0
+ (S-cm2/mol) Anion λ0

- (S-cm2/mol)

H+ 349.6 OH- 199.1

Li+ 38.7 F- 55.4

Na+ 50.10 Cl- 76.35

K+ 73.50 Br- 78.1

Rb+ 77.8 I- 76.8

Cs+ 77.2 NO2
- 71.8

Ag+ 61.9 NO3
- 71.46

NH4
+ 73.5 ClO3

- 64.6

Ethylammonium 47.2 ClO4
- 67.3

Diethylammonium 42.0 IO4
- 54.5

Triethylammonium 34.3 HCO3
- 44.5

Tetraethylammonium 32.6 H2PO4
- 57

Tetra-n-butylammonium 19.5 HSO3
- 50

Dimethylammonium 51.8 HSO4
- 50

Trimethylammonium 47.2 HC2O4
- 40.2

Tetramethylammonium 44.9 HCOO- 54.6

Piperidinium 37.2 CH3COO- 40.9

C6H5COO- 32.4

Be2+ 90

Mg2+ 106.0 CO3
2- 138.6

Ca2+ 119.0 HPO4
2- 66

Sr2+ 118.9 SO4
2- 160.0

Ba2+ 127.2 C2O4
2- 148.2

Fe2+ 108.0

Cu2+ 107.2 PO4
3- 207

Zn2+ 105.6 Fe(CN)6
3- 302.7

Pb2+ 142.0

UO2
2+ 64 Fe(CN)6

4- 442.0

Al3+ 183

Fe3+ 204

La3+ 209.1

Ce3+ 209.4

T1

Limiting Molar Ionic
Conductivities in
Aqueous Solutions
at 25°C

Data compiled from
references 1, 2, 5,
6 and 9.
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using EQ8 and data from the table.
Both the  cation  (“H+”) and  anion
(CH3COO-) are singly charged; thus,
ν+ = ν- = 1. From T1, λ+

0 = 349.6
S-cm2/mol and λ-

0 = 40.9 S-cm2/mol.
Therefore, Λ0 = (349.6 + 40.9) =
390.5 S-cm2/mol. It is interesting to
compare this calculated value to the
data plotted in F1. For milliMolar (or
greater) concentrations of acetic
acid, the experimental value of Λ0 is
less than 30 S-cm2/mol. This indi-
cates that acetic acid is incompletely
ionized under these solution condi-
tions; i.e., it is a weak acid.

Λ0 for KCl. Better agreement be-
tween the calculated limiting and
measured values for Λ0 could be ex-
pected in the case of the strong elec-
trolyte KCl.  Again using EQ8 as
above, we calculate Λ0 to be 149.85
S-cm2/mol. The experimental data
in F1 are within about 10% to 13%
agreement with the calculated value
for dilute solutions.

Λ0 for Ferric Oxalate.
Fe2(C2O4)3 is an example of a 2:3
electrolyte. In this case,

Λ0= ν+ λ0
+ + ν- λ0

-

(2×204)+(3×148.2)=
852.6 S-cm2/mole

Comparison of Λ0 for KOH, HCl
and KCl. Last, we can compare val-
ues of Λ0 for three electrolytes of
interest in acid/base titrations. Cal-
culated values for these 3 com-
pounds are: 272.6 S-cm2/mol
(KOH), 425.95 S-cm2/mol (HCl)
and 149.85 S-cm2/mol (KCl). Now
consider how the measured conduc-
tivity will change during the course
of a titration in which HCl is the
analyte and KOH is the titrant. In-
itially, the measured conductivity
will have a relatively high value (un-
doubtedly not 425.95 S-cm2/mol in
any real-life example, but “high”
nonetheless). As KOH titrant is
added, the conductivity decreases,
since HCl is converted to KCl and
water. At the equivalence point in the
titration, all of the HCl has been neu-
tralized to form KCl, and the conduc-
tivity will be at its lowest value. As
KOH is added after reaching the
equivalence point, the conductivity
will begin to rise again, since KCl
and unreacted KOH are both ionized
in solution. The shape of the titration
curve obtained is shown in F2. Ex-
amples of curves for other types of
titrations are given in reference 1.

Conductance Measurements:
Theory

The section above dealt with the
chemical aspects of conductance and
conductivity. In this section, we will
examine the theory of conductance
measurements from an electro-
chemical perspective.

A General Equivalent Circuit of a
Conductance Cell

Most conductance measure-
ments are made using two electrodes
of the same geometric surface area.
These electrodes are positioned par-
allel to and facing one another, sepa-
rated by a gap of fixed dimensions.
For this common configuration, the
equivalent circuit drawn in F3 ap-
plies (7,8).

In F3, the capacitance and resis-
tance of the cell connectors and the
contacts they make are shown as Cc

and Rc, respectively. The double-
layer capacitances of the two elec-
trodes (Cd) are assumed to be equal,
since the electrodes are constructed
to have identical microscopic sur-
face areas. The resistance of the so-
lution between the two electrodes is
symbolized by Rs. An interelectrode
capacitance term, Ci, is included to
account for the dielectric properties
(9) of the bulk solvent (outside the
diffuse layer). Last, a frequency-de-
pendent Faradaic impedance, Zf,
which includes both charge-transfer
resistance and Warburg impedance,
is shown for each electrode.

A Simplifed Equivalent Circuit
By making low impedance con-

nections to the cell it is usually valid
to ignore the influence of Cc and Rc.
(However, for very low solution re-
sistances, Rc may become important,
since it is in series with Rs.) The
complications imposed by the
Faradaic impedance are minimized
through experimental design. As we
will see below, conductance meas-
urements are often made by impos-
ing a potential excursion (pulse or
sinusoid) and measuring the result-
ing current. By using short pulse
widths or high frequencies, the
branch of the circuit containing Zf

can be neglected (Zf varies as the
reciprocal square-root of frequency,
(3)). Therefore, the circuit shown in
F3 can be simplified to the three-
component model drawn in F4.

In F4, Rs signifies the solution
resistance, and the Cs and Cp denote
combined series and parallel capaci-
tances, respectively. Occasionally,
other treatments of the above prob-
lem omit Cp and use a single resistor
and capacitor in series. While valid
for a range of experimental condi-
tions, this assumption tends to break
down for large solution resistances
or when high frequencies are used in
a.c. measurements (8,9).

Zf

Cc Cc

Cd Cd

Ci

RcRsRc

Zf

F3

General equivalent
circuit for a
two-electrode
conductance cell.
(Redrawn from
reference 8.)
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Example of a
conductometric
titration curve
for the titration
of a strong acid
with a strong base.
(Adapted from
reference 1.)
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Interrogation Waveforms
The experimental challenge  in

conductance measurements is to ap-
ply a waveform to a conductance cell
represented by the circuit in F4 and
to accurately measure the response.
The response must then  be inter-
preted in order to separate the infor-
mation due to capacitive elements
from the solution resistance (i.e., the
reciprocal conductance). The inter-
rogation waveform used may in-
volve an applied current
(galvanostatic  methods)  or an  ap-
plied potential (potentiostatic meth-
ods). Each of these broad categories
may be further subdivided into fre-
quency domain (a.c.) and time do-
main (pulse) experiments. Readers
interested in frequency domain po-
tentiostatic techniques should refer
to a paper by Bott on a.c. impedance
experiments (10) and to the informa-
tion on the BAS-Zahner IM6/6e in-
struments available on our website
(11). Controlled current techniques
are discussed in several texts (3,9)
and in the patent literature (12).
BAS offers three instruments with
galvanostatic capabilities: the IM6
(11), the IM6e (11) and the LG-50
(13). The remainder of this paper
will focus on the theory of time do-
main potentiostatic techniques. The
experimental implementation of
these techniques for determining
conductivity will be addressed in
Part 2 of this paper, as will a planned
series of BAS products named ep-
silon.

Single-Pulse Measurements
When a potential pulse is applied

to a conductance cell, the equivalent
circuit drawn in F4 can be simplifed
to a single capacitor (Cs) and a single
resistor (Rs) placed in series for mil-
lisecond time scales (and longer). In
this case, the applied potential (E)
drops across the two circuit elements
according to (3):

where Q is the charge that accumu-
lates on the capacitor, and i is the cell
current. Since i is the time rate-of-
change of charge (Q’), the above
equation can be rewritten as:

The above ordinary differential
equation can be solved by the
method of Laplace transforms (14).
The transform of EQ12 is given by:

In EQ13, s is the Laplace vari-
able (not conductance!). A boundary
condition for this experiment is that
the charge accumulated on capacitor
Cs = 0 until the potential is applied;
i.e., Q(0) = 0. Making this substitu-
tion into EQ13 and rearranging
gives:

Taking the inverse Laplace trans-
form (s → t) of EQ14 yields:

Thus, the magnitude of the
charge that has accumulated at a
given time, Q(t), is given by EQ15.
The corresponding current observed
at any point in the circuit can be
obtained by differentiating EQ15
with respect to t:

The above equation is identical
in form to equation (1.2.6) in refer-
ence 3. However, Cs in EQ16 is a
function of the capacitances of both
electrodes in the conductance cell,
rather than the double-layer capaci-
tance at a single (working) electrode.

That is, Cs equals ½Cdl if the two
electrodes are perfectly matched in
microscopic area (capacitances). In
any case, EQ16 can be linearized by
taking the natural logarithm of both
sides of the equation:

The solution conductance (S)
can be obtained from the y-intercept
of a plot of ln(i) vs. t:

The advantage of the single-
pulse technique is its simplicity. The
disadvantage is that linearity in
EQ18 will only be obtained when
the conductance cell can accurately
be represented by an equivalent cir-
cuit with only two components (Rs

and Cs) connected in series. As men-
tioned above, this assumption breaks
down when the solution resistance is
large and/or data are acquired at
short times (high frequencies).

Bipolar Pulse Methods
A more robust approach is pro-

vided by the technique called bipolar
pulse conductance (7-9). In this ex-
periment, a potential pulse of magni-
tude +E is applied for a period t1,
followed by a pulse of opposite po-
larity, -E, for a period t2. There are
two constraints placed on the pulse
widths. First, t1 should be suffi-
ciently short such that  no greater
than 1% charging of the series ca-
pacitance (Cs) shown in F4 occurs.
Second, t1 and t2 should differ in
duration by no more than 1% (i.e.,
they should be “identical”). No as-
sumptions need to be made about the
absence of a parallel capacitance in
this case.

A single current measurement is
made at time t2, when the current
represents solely the resistive com-
ponent of the cell impedance. That
is, immediately after application of
the first pulse, any parallel capaci-
tance present charges quite rapidly.

E E E iRapp C R s= + = — +
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Q
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The series capacitance also charges,
but at a slower rate due to the imped-
ance to charge flow imposed by the
solution resistance. At time = t1 a
pulse of opposite polarity is imposed
(total potential excursion = 2E), and
the parallel capacitance discharges.
The series capacitance (which is
only charged to about 1% of its ca-
pacity) also discharges. At time = t2,
both capacitances are fully dis-
charged, and the instantaneous cur-
rent (i2) is indicative only of Rs. The
conductance is then determined in a
straightforward manner (15) from
the current at time = t2 and the mag-
nitude of the potential pulse, E:

If t1 and t2 can be matched to 1%
or better, and if the voltage dropped
across the series capacitance does
not exceed 1% of the applied voltage
at t1, the conductance can be meas-
ured to within 0.01% of its value (9).
In order to satisfy the latter con-
straint, pulse widths of no more than
10 ms are ordinarily allowable.

A Look Ahead
In Part 2 of this series, I will

examine the experimental aspects of
conductance measurements. In par-
ticular, I will discuss single and bi-
polar pulse experiments. Finally, a
few representative  applications of
conductance measurements will be
summarized.
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