
Spectroelectrochemical methods
provide the opportunity to spectro-
scopically probe unique chemical
species that are generated in situ
during redox reactions at electrode
surfaces. In many cases electro-
chemistry yields synthetically inac-
cessible oxidation states, and there-
fore spectroelectrochemistry offers
new windows for exploring novel
chemical pathways.

The major challenge for the de-
velopment of a spectroelectro-
chemical method is to design an
electrochemical cell  that is  mutu-
ally compatible with the desired
spectroscopic technique. Numerous
cell designs and optically transpar-
ent electrodes (OTEs) for  a  wide
range of spectroscopic techniques
are described in the literature, but in
general have been developed for a
specific application (1-4). An  ex-
ception to this is the optically trans-
parent thin-layer electrode (OT-
TLE), which has been routinely
used for  transmission  spectroelec-
trochemistry (5). The OTTLE cell
has been implemented for numer-
ous UV-visible spectroelectro-
chemical studies under a variety of
experimental conditions due to ease
of construction, the need for only
small sample volumes, and the ca-
pability for rapid electrolysis (6).

In contrast to absorption spec-
troscopy, luminescence spectros-
copy has  received relatively little

use as a general spectroelectro-
chemical method for investigating
solution species even with the in-
herent sensitivity advantage of lu-
minescence over absorption meth-
ods. The primary reason for this
trend can be traced to the lack of a
versatile spectroelectrochemical
cell that satisfies the 90° detection
requirement for luminescence
measurements and exhibits the
positive features of the OTTLE cell.
Several reports have been published
that use the OTTLE cell for lumi-
nescence spectroelectrochemical
measurements (7-12). To accom-
modate detection of the emitted
light and the short optical path, the
OTTLE cell was placed at 45° rela-
tive to the excitation and emission
slits. These studies demonstrated
the utility of luminescence spec-
troelectrochemistry, the sensitivity
of luminescence over absorption
spectroscopy, and the short elec-
trolysis advantage provided by the
OTTLE. However,  poor signal-to-
noise ratios resulting from scatter-
ing  off the front face of the cell,
nonreproducible cell positioning
and the short optical path generally
offset the positive features. One al-
ternative approach for lumines-
cence spectroelectrochemistry used
a cuvette-based configuration with
a gold resinate film electrode that
permitted detection of the emitted
light at 90° (13). Our efforts toward

the development of a general spec-
troelectrochemical cell for lumines-
cence studies have tried to incorpo-
rate as many of the advantages of
the OTTLE cell while also fulfilling
the 90° detection requirement of lu-
minescence spectroscopy (14).

Cell Design

The basic cell and electrode
design for luminescence spec-
troelectrochemistry are shown in
F1 (14). This approach addresses
the two principal experimental con-
siderations for coupling lumines-
cence spectroscopy with electro-
chemistry: 1) reproducible excita-
tion and detection of the resultant
emission and 2) efficient electroly-
sis within the optical channels.

The cell body  was developed
from a solid polyethylene block to
resemble, and therefore replace, the
cuvette holder in a conventional lu-
minescence spectrophotometer. An
upper compartment was first milled
into the top of the polyethylene
block to house the reference and
auxiliary electrodes. A second,
lower compartment was then milled
into the center of the block for the
working electrode. Rectangular
openings were cut into each face in
line with the lower compartment. A
quartz cuvette was inserted into the
lower compartment to provide opti-
cal windows and a fixed 1 cm opti-
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cal path. The windows were posi-

tioned to take advantage of the ex-

isting optics in an Aminco-Bow-

man Series 2 spectrophotometer
(SLM Instruments, Inc.).

Reticulated vitreous carbon
(RVC, 100 pores per inch, Electro-
synthesis Co., Inc.) was used as the
working electrode. The three-di-
mensional structure of RVC permits
facile fabrication of a working elec-
trode that fits into the lower com-
partment and extends into the upper
compartment. The challenge of in-
corporating the 90° detection re-
quirement of luminescence spec-
troscopy within an electrochemical
cell is also addressed by drilling op-
tical channels of a tee configuration
in line with the windows of the
lower compartment. This configu-
ration provides  long optical paths
for both reproducible excitation and
detection of the emission. A diame-
ter of 2 mm was found to afford the
optimum tradeoff between elec-
trolysis time and signal-to-noise ra-
tio.

Approximately 2-3 mL of solu-
tion is required  to completely  fill
the cell for operation. The solution
volume occupied by the RVC work-
ing electrode was determined by
coulometry of a standard ferricy-
anide solution to be approximately
0.4 mL. A platinum wire auxiliary
electrode, which encircled the
working electrode, and a Ag/AgCl
reference electrode (BAS MF-
2021) were placed in the upper
compartment to complete the elec-
trochemical cell. Electrical contact
to the working electrode was made
with a platinum wire. A cell cover
was also machined to support the
electrodes and exclude oxygen.

Results and Discussion

From an electrochemical point
of view, RVC is inert and displays a
wide potential range for electro-
chemical measurements in aqueous
and nonaqueous solutions (15). The
porous structure also maintains
good communication between the
working electrode in the lower sam-
ple compartment and the auxiliary
and reference electrodes in the up-
per sample compartment. The po-
rosity of 100 pores per inch RVC is
small enough that diffusional mix-
ing from the upper compartment
does not occur in the optical chan-
nels. Thus, exhaustive electrolysis
is achieved in the optical channels
within 10-25 mins depending on the
optical channel diameter, solvent,
electroactive species, analyte  con-
centration and electrolyte. An addi-
tional advantage of RVC is that if
fouling occurs, the electrode can be
easily removed and replaced.

The electrochemical and lumi-
nescence capabilities  of the spec-
troelectrochemical cell are easily
demonstrated by the o-tolidine re-
dox  couple. F2 depicts the cyclic
voltammogram for the two-electron
oxidation of a 1 mM aqueous solu-
t ion of o-tolidine with 0.5 M
CH3COOH and 1 M HClO4 in the
luminescence spectroelectrochemi-
cal cell. The electrochemical pa-
rameters were determined to be Eo’
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Cyclic voltammogram
of 1 mM o-tolidine in
0.5 M CH3COOH, 1
M HClO4 in the lumi-
nescence spec-
troelectrochemical
cell with 2 mm diame-
ter optical channels.
Initial potential: +0.4
V vs. Ag/AgCl. Scan
rate: 2 mV/s. (Re-
printed with permis-
sion from reference
14.)
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= +0.635 V, ∆Ep = 90 mV and
ipa/ipc = 1.0, which are in good
agreement with literature values
(6,13). Furthermore, the spectropo-
tentiostatic oxidation of o-tolidine
illustrates the stepwise decrease in
luminescence intensity following
excitation at 270 nm (F3). In a
manner similar to absorption spec-
tropotentiostatic experiments, Eo’

and n values can be calculated from
the individual spectra with the
Nernst equation and equation be-
low, where Ired, Iox, and I are the
luminescence intensities of the so-

lution under potential conditions
that yield the completely reduced
form, the completely oxidized form
and a mixture of the oxidized and
reduced forms, respectively, φ is the
luminescence quantum efficiency,
and b is the optical path length (13).

A Nernst plot of the applied poten-
tial versus log [Ox]/[Red] yields a
straight line with the slope equal to

0.0591/n and the y-intercept equal
to Eo’. The Nernst plot for the data
at 405 nm (F3) yields Eo’ = +0.638
V and n = 1.91, which is consistent
with the cyclic voltammetry data.

One area where our group has
applied luminescence spectroelec-
trochemistry is in the investigation
of the excited state properties of
transition metal complexes. Typical
photochemical and photophysical
studies rely on the synthesis and
purification of the complex of inter-
est. Therefore, most photolumines-
cence studies of transition metal
complexes center around easily
synthesized electron configurations
such as d3, d6 or d10. In contrast,
the luminescence spectroelectro-
chemical cell permits the investiga-
tion and characterization of syn-
thetically inaccessible oxidation
states provided the target oxidation
state is electrochemically accessible
from a parent complex and is stable
in solution.

One example of this is the
Re(II) complex, [Re(dmpe)3]2+,
where dmpe is 1,2-bis(dimethyl-
phosphino)ethane (16). The parent
Re(I) complex, [Re(dmpe)3]+, is
easily synthesized and exhibits a re-
versible one-electron oxidation to
Re(II) in acetonitrile. The d6 Re(I)
form is colorless and upon excita-
tion  into  the UV absorption band
shows no luminescence (F4). How-
ever, oxidation in the luminescence
spectroelectrochemical cell to the
d5 Re(II) electron configuration
gives a reddish-pink solution with
an absorption maximum at 530 nm,
which has been assigned as a  li-
gand-to-metal charge-transfer
(LMCT) band. Excitation at 530
nm produces an intense emission at
593 nm (F4) with a quantum effi-
ciency of 0.066; for comparison,
the quantum efficiency of
[Ru(bpy)3]2+ in water is 0.042.
Consequently, luminescence in
conjunction with absorption  spec-
troelectrochemistry has enabled the
discovery of  a  rare  example of a
highly luminescent transition metal
complex with a d5 electron configu-
ration.
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Spectra recorded dur-
ing a luminescence
spectropotentiostatic
experiment of 5 µM
o-tolidine in 0.5 M
CH3COOH, 1 M HClO4
in the luminescence
spectroelectrochemical
cell with 2 mm diame-
ter optical channels. Ap-
plied potentials in V vs.
Ag/AgCl are as follows:
(A) +0.405; (B) +0.608;
(C) +0.628; (D) +0.637;
(E) +0.648; (F) +0.658;
(G) +0.670; (H) +0.806.
λex is 270 nm. (Re-
printed with permission
from reference 14.)

R
el

at
iv

e
In

te
ns

ity
/ a

rb
itr

ar
y

un
its

400 600500

A

B

700

Wavelength / nm

F4

Uncorrected emission
spectra of 0.14 mM (A)
[Re(dmpe)3]2+, λex =
530 nm; and B)
[Re(dmpe)3]+, λex =
220 nm in acetonitrile
with 0.1 M (n-Bu)4NPF6
in the luminescence
spectroelectrochemical
cell. (Reprinted with
permission from refer-
ence 16.)
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Conclusion

Luminescence spectroelectro-
chemistry is easily accomplished
with the versatile cell design de-
scribed above. In situ electrochemi-
cal generation of stable species
coupled to spectroscopic charac-
terization by luminescence and ab-
sorption methods clearly opens
possibilities for the investigation of
the properties of novel excited state
species and their reactivity.
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