
Recently, many computer software
developers have been providing us-
ers the comfort of not having to
worry about the math behind what
is going on. In this article, we dis-
cuss some problems not usually
considered in commercial software,
and attempt to show how some ad-
vanced  features of nonlinear least
square analysis can be useful. In the
previous article of  this series (1),
we noted that it is not always possi-
ble, and may sometimes be unwise,
to transform an equation into a lin-
ear  form, and  that  even evidently
linear equations occasionally intro-
duce nonlinear convolutions. One
reason for the use of least square
techniques in the elaboration of the
experimental data, was “... support
for identification of the physical
phenomenon that  led to the theo-
retical model from which the fitted
line was derived.”

In this article, we would like to
return to this point, but we will con-
sider it in the context of Nonlinear
Least SQuare (NLSQ) curve fitting.
In particular, we will focus on the
information that can be obtained
from studying the behavior of least
square estimates (2). We will sum-
marize and compile the major
achievements of Ratkowsky (3) and
co-workers. The study of  the be-
havior of least square estimates in
nonlinear models is a relatively new
field. We hope that the use of the
nomenclature, ideas, and methodol-
ogy presented here will help the
user to make a generalization and
assist in the decision about the effi-
ciency of a particular model.

Since this article invokes issues
not accounted for by commercial
software, it raises questions in
many instances that have not been
considered at all. This article will:

• Provide guidance and clarity to
nomenclature used in linear and
nonlinear problems.

• Introduce curvature measures of
nonlinearity, discuss when to
use them, and indicate their sig-
nificance in the case of models
that cannot be linearized.

• Discuss how to choose between
different models and how well
a model fits experimental points.

We assume that  the reader is
acquainted with the basics of curve
fitting procedures (LLSQ and
NLSQ methods) and has some fun-
damental knowledge of matrix al-
gebra. For this reason we will not
discuss any specific algorithms or
techniques; interested readers may
consult references 4 and 5 or the
original literature on the subject
(6,7).
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Linearity vs. nonlinearity in
curve fitting

The term “linear” in linear least
square (LLSQ) fitting is often used
to express two things: the first, and
more common, refers to a straight-
line relationship between variables
(i.e., y = A + BX); the second refers
directly to a physical model in
which the quantities to be estimated
(the parameters) appear linearly.
According to the last distinction,
models such as y = A + BX + CX2

+ ... and y = A + BX1 + CX2 fall
into a linear category, although in
fact the first is a parabola (or higher
polynomial) and the second repre-
sents a surface in a three-dimen-
sional space.

It is obvious that regardless of
the above meaning, in an intrinsic
linear model all parameters enter
the model (fitted) equation in a lin-
ear way. On the other hand, if any
of the parameters were to enter the
model equation in a nonlinear way,
the model would be considered
“nonlinear.” The terms “linear
way” and “nonlinear way” remain
obscure, however, and the distinc-
tion between parameters that ap-
pear in a “linear way” requires fur-
ther clarification. Two propositions
have been advanced to address this
(8). They are based on the differ-
ences in the behavior of the first de-
rivative of the fitted function.
Namely:

a)the first derivative  of the fitted
function with respect to the pa-
rameter under consideration is in-
dependent of that parameter,

b)that derivative is independent of
any other parameter in the model.

According to this distinction,
the parameters A and B in the ap-
parently straight-line equation y =
A + BAX could be considered “lin-
ear” only by the first definition.
Thus, the whole model falls into a
nonlinear category. Another good
example would be the function y =
A + BCX.

The grounds for the assessment
of the unknown parameters in
either a linear or a nonlinear model
establishes the criterion of least
squares (4). Provided that the errors
of the variables under consideration
are random (i.e., they are inde-
pendent and normally distributed
with mean equal zero and a finite
variance), the significance of the
LSQ criterion is due to the fact that
the least square estimates of the pa-
rameters have some optimum statis-
tical properties. For the exclusive
case of linear models, this means
that the estimates are:

(a)unbiased,

(b)the maximum likelihood esti-
mates,

(c)the estimates having a minimum
variance.

In this sense, the method of
least squares provides “the best
available parameters.”

It should be realized that only
estimates with the above properties
allow one to calculate a reliable
range for their variance, demon-
strate the true correlation among
them, provide predicted values  of
the dependent variable with prede-
termined probability, and assure
statistically meaningful tests.

Nonlinear least square esti-
mates, on the  other hand,  do not
embody the above optimal proper-
ties. They are usually biased  and
nonrandomly distributed, and their
variance most likely exceeds the
minimum possible variance. The
extent of the bias, the non-normal-
ity, and the excess of variance differ
significantly from model to model,
even within a model. It depends on
a number of factors, including the
amount of data and their distribu-
tion in the experimental space. It is
actually more appropriate to speak
about model/data combination
when discussing nonlinearity and
estimates for nonlinear models.

It is fortunate, however, that
the least square estimates of the pa-
rameters in nonlinear models gain
all the optimal statistical properties
of true linear models asymptoti-

cally.  Thus (provided  that the de-
pending variables (fitted values)
have errors that are independent and
normally distributed) the bigger the
sample is, the closer all the desired
properties of linear model estimates
(and “linearity” in this sense) will
be. Unfortunately, it is not possible
to tell a priori how large a sample
must be to approach these asymp-
totic properties sufficiently. One
finds some nonlinear models for
which the asymptotic properties are
well approximated for small sample
sizes (6–9), whereas for other mod-
els, sample size must be very large
(50-100) to approximate such prop-
erties satisfactorily for statistical
measures. So far, no rule exists —
any improvement can thus be made
a posteriori, but to do this, one
needs  some quantitative  measures
of the “deviation from linearity”
(i.e., nonlinearity). The term “close
to linear” (7) has been introduced
and used for this purpose.

Several attempts have been
made to measure the extent to
which nonlinear models differ from
linear models, and to provide a way
to evaluate “close to linear” behav-
ior. The first quantitative measures
of nonlinear behavior were pro-
posed in 1960 by Beale (9). Gutt-
mann and Meeter (10) later dis-
cussed some limitations of Beale’s
method. In 1971, Box (11) derived
formulas for estimating bias in least
square estimates. His formulas were
subsequently examined by Gillis
and Ratkowski (12) in extensive
simulation studies. Contemporary
measures  of nonlinearity were  in-
troduced in 1980 by Bates and
Watts in their fundamental paper
(13). They developed new measures
of nonlinearity based on the intui-
tive concept of geometric curvature,
which they  applied for  a  multidi-
mensional space. They also pro-
vided relationships between their
measures and those previously pro-
posed by Beale. Additionally, they
showed how Box bias measures of
nonlinearity were related to their
proposition.
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Bates and Watts established
that the nonlinearity of a model can
conveniently be separated into two
components:

• “intrinsic” nonlinearity, and

• “parameter-effect” nonlinearity.

Intrinsic nonlinearity (IN) rep-
resents curvature of the multidi-
mensional surface called the solu-
tion locus of the fitted model. IN is
inherent to the particular model and
data set, the number of data points,
and their space distribution. It can-
not be changed by mathematical
transformation of parameters (re-
parametrization). It usually de-
creases as the amount of data in-
creases for a particular model, al-
though there is no rule on the rela-
tionship between the sample size
and the magnitude of IN. It is equal
to zero for a linear model. It is zero
for nonlinear models, in the limit
when the number of points goes to
infinity. It should be emphasized in
this context that a negligible value
of intrinsic  nonlinearity  implies  a
negligible bias in predicted values
of the dependent variable and
makes the determined confidence
limits for the predicted values
meaningful.

Parameter-Effect Nonlinearity
(PE) is a collective measure of non-
linear behavior associated with the
mathematical form and the particu-
lar choice of the parameters. It can
be changed by reparametrization.
By suitable reparametrization, it
can be continuously minimized to
any desired value, ideally to zero.
Geometrically, PE is related to the
projection of the parameters’ lines
on a plane tangent to the solution
locus. Provided the intrinsic non-
linearity is also negligible, the
smaller the parameter-effect non-
linearity, the closer a given non-
linear model approaches a linear
model in behavior. Consequently,
fewer iterations are necessary to
achieve convergence in parameter
estimation (there is no iteration for
a true linear model), and statistical
formulas and other tests ordinarily
used for linear models (e.g., t-test,

parameter correlation) will be more
valid. In short, the estimated pa-
rameters will be closer to their
minimum variance parameter esti-
mators.

Box bias curvature measure
and the associated percentage bias
were proposed by Box in 1971.
They are measures of nonlinearity
indirectly related to parameter-ef-
fect nonlinearity. Both represent in-
dividual nonlinearity measures.
They are joined to  the individual
parameter and the way it enters the
model. They reveal the parameters
that behave most “nonlinearly” and
suggest possible reparametrization.
They change after reparametriza-
tion. They can be used for prognos-
ing a reparametrization and judging
its effect a priori. The percentage
bias expresses the parameter bias as
part of its least square estimate. It is
a useful quantity which  identifies
the extent of a parameter’s non-
linear behavior. Excluding the case
of the parameter representing a
constant  term  in model  functions,
the closer a parameter’s percentage
bias is to zero, the closer this pa-
rameter appears to linear behavior.
An arbitrary rule  has  been  estab-
lished which says that absolute
value of a percentage bias exceed-
ing 1% is a good indication of non-
linear behavior.  It is  important to
realize that a “linear-appearing” pa-
rameter in a nonlinear model does
not necessarily imply linear behav-
ior in estimation, zero Box bias, or
other statistical properties expected
for linear models.

A term closely related to cur-
vature measures of nonlinearity and
used in their calculation is Standard
Radius (SR). It is the square root of
the sum of squared residuals,  di-
vided by the degrees of freedom
and multiplied by the number of the
parameters. It scales real “curva-
ture” of the solution locus. It is
used during the calculation supply-
ing the curvature measures of non-
linearity and parameter estimates. It
also stands as the reference factor
for the assessment of conservative
confidence regions. This region is

constructed so that the expected
probability of the true parameter ly-
ing inside the region is at least 1-α.

In general, the characteristics
discussed above provide informa-
tion about how close the investi-
gated model is approximated by a
linear model. If it is close enough,
one can use standard statistical
tests, formulas, and methods. A
“close enough” can be judged on
statistical grounds by comparing IN
and PE with 1/(2 ), where F =
F(p,n-p;α) is the F-distribution ta-
ble value. The value 1/(2 ) may
be regarded as the radius of curva-
ture of the 100(1-α) percentage
confidence region (9). The new
measures of nonlinearity help us to
estimate the efficacy of  particular
models. They also facilitate making
a choice between competing mod-
els.

How curvature measures of
nonlinearity are calculated

We have come to the point that re-
quires a more quantitative descrip-
tion of these curvature measures of
nonlinearity.

First, however, we must make
some introductory remarks on the
methods that contemporary NLSQ
techniques use to estimate the un-
known parameters in a model.
There are a number of algorithms
and hints offered in the literature on
this subject (4,5). The most popular
seems to be the method known as
“Marquadt-Levenberg strategy”
(5,6) (popularized by the majority
of commercial curve fitting soft-
ware), although its cousin, the
“rank-two DFP” algorithm (5,7)
has far superior convergence speed
and numerical properties. Both
methods have their roots in the
“Gauss-Jordan method,” which is
the third most popular. Having the
same basis (i.e., an approximation
of a nonlinear function by the first-
order expansion of its Taylor se-
ries), they differ in the algorithms
in which the corrections to the esti-
mates are introduced during sub-
sequent iterations. The result is dif-
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ference in speed of convergence, re-
liability, and sometimes conven-
ience.

If one has a set of n observa-
tions (x1, x2, ..., xn) and decides to
fit a model represented by a non-
linear function Y = f(X,θ], where X
= (x1, x2, ..., xn)T and θ represents
(p×1) vector θ = (θ1, θ2, ..., θp}T of
p parameters to be estimated, any
NLSQ procedure requires calcula-
tion (either analytically or numeri-
cally) of the partial first derivatives
of Y with respect to each parameter

(1)

at some X0 and θ0, and formation
of an n×p matrix,  say  A• , which
contains aij as elements. The index i
goes from 1 to n and denotes the
position of the data pair in the col-
lection of experimental data. The
index j goes from 1 to p and de-
notes the parameter under consid-
eration. Evaluation of the above
curvature measures of nonlinearity
also requires the calculation of the
second partial derivatives

(2)

and the construction of an n×p×p
matrix, say A•• , from these deriva-
tives.

Numerical practice has shown
that it is advantageous in such cal-
culations to deal with response-in-
variant standardized matrices.
Thus, at the initial stage of matrix
formation, all derivatives are di-
vided by a scaling factor. In  this
calculation, the most convenient ap-
pears to be the standard radius, ρ =
σ , where σ is the square root of
the residual sum of squares divided
by (n-p) (i.e., RSS/(n-p)).

Calculations of the curvature
measures of nonlinearity can be
greatly facilitated by first perform-
ing suitable transformations of the
initial matrices. Such transforma-
tions are easy and quick on contem-
porary computers and consist of co-
ordinate transformation that rotates
the sample space so that the first

coordinate vectors are parallel to
the tangent plane, and the last n-p
are orthogonal to it. In matrix lan-
guage, this operation is equivalent
to premultiplication of all derivative
vectors in the sample space by an
orthogonal Q matrix that is a part of
QR decomposition (13) of the in-
itial matrix A• , such that:

(3)

If one defines (for convenience)

(4)

then the matrix

(5)

consists in the first p faces (the pa-
rameter-effect acceleration array)
and the remaining n-p faces (the in-
trinsic acceleration array). In their
original paper (11), Bates and Watts
showed how to reduce each such ar-
ray to a single measure and de-
scribed an iterative method for find-
ing the maximum intrinsic curva-
ture measure, IN, and the maximum
parameter-effect curvature measure,
PE, from these arrays. This method
can be incorporated into a computer
program. This has been done in
BASIC (15) and other program-
ming languages.

Having constructed the matri-
ces of first and second derivatives
as described above, very little addi-
tional programming is necessary to
provide simultaneously the bias in
the maximum likelihood estimates
of the parameters as defined by Box
(9), since

where , represents the p×1
vector of the first derivatives of ,
and is the p×p matrix of second
derivatives concerning each ele-
ment of the vector θ, evaluated at
xi,xj, respectively. The bias given by
the left hand side of this equation is
the p×1 vector, representing the dis-
crepancy between parameter esti-
mates and true values.

Similarly, bias in can be cal-
culated from the relationship

(7)

Box (9) also provides formulas that
approximate (albeit less accurately)
the variances of the predicted value
of as well as the variance of the
predicted value of the parameter .

Relationship of Student’s
t-value to the curvature meas-
ures of nonlinearity

The characteristic that expresses the
ratio of a parameter’s least square
estimate to its standard error is
known as Student’s t-value (16). t-
values are often used for examining
the behavior of a model. Computer
programs routinely deliver these
values. t-values are ordinarily tested
with reference to the Student’s t-
distribution  having n-p degrees of
freedom and 100(1-α) percent con-
fidence region. It is a common be-
lief that a high t-value tends to indi-
cate that the parameter is well de-
fined. It is less recognized however,
that a high t-value does not neces-
sarily mean that the parameter esti-
mate will have other desirable sta-
tistical properties, such as inde-
pendent and identical distribution of
errors, “close to linear” behavior,
etc. Also, especially in the case of
multiparameter models, the t-value
may be low because of high corre-
lation between parameters within
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the model. Although in many in-
stances the magnitude of the t-value
can be useful as an indicator of
nonlinear behavior, its validity de-
pends on several of the model’s sta-
tistical properties, including  satis-
faction of the “close to linear” con-
dition. “Close to linear” behavior is
estimated, however, through IN and
PE calculations. It can be especially
dangerous to rely only on t-values,
knowing nothing about PE and IN.

Correlation among least
square estimates in non-
linear models

Some modern software packages
provide correlation between the es-
timated parameters within a model,
usually represented by the parame-
ters’ correlation coefficients. They
should be either 1 (for the same pa-
rameter) or as close to zero as pos-
sible (for different parameters).
Again, there is no reason to believe
that a high correlation between pa-
rameters announces nonlinear be-
havior (bias, variance excess, non-
normal distribution) of the esti-
mates in a nonlinear model. It can
be demonstrated (7) that even for a
strictly linear model, the correlation
coefficients between the parameters
can be made as large as desired
simply by changing the inde-
pendent variable’s location (i.e., a
constant shift in all x-values). Thus,
for nonlinear models, high correla-
tion between the least square esti-
mates cannot indicate serious non-
linear behavior of these estimates.
The explanation of a common be-
lief contrary to this statement lies
perhaps in the credit given to the
fact that in badly behaved nonlinear
models, the correlation among the
parameters is often high. On the
other hand, many examples can be
found which prove the inaccuracy
of such a belief. The conclusion
that follows is that the magnitude of
correlation coefficients of parame-
ter estimates cannot serve as a diag-
nostic tool in the estimation of non-
linear behavior of least square esti-
mates.

The choice of a model

One of the main purposes of fitting
an equation to experimental data is
to resume the multiplicity of data,
in order to obtain either interpola-
tion formulas or calibration curves
which will be helpful in later calcu-
lations, control, or graphical repre-
sentation. Other (often coinciding)
purposes are to confirm (or refute)
a theoretical relationship, to com-
pare several sets of data in terms of
constants in the representing equa-
tions, and to aid in the choice of a
theoretical model. In this last con-
text, the sufficient argument in fa-
vor of a choice is some evidence or
physical phenomena that indicates
that the model is appropriate. How-
ever, one often meets a situation in
which several competing models
appear to fit the experimental
points equally well; here the use of
a model is not particularly well re-
solved on physical grounds (al-
though attractive or justified other-
wise). The choice between such
models must then consider other
factors. We believe that IN and PE
curvature measures may be of great
value in this task. It is intuitively
clear that having other things equal,
or comparable, the nonlinear mod-
els that closest approach linear
models should be given priority.
Moreover, this intuitive affection
has rigorous foundation on statisti-
cal grounds as indicated above.

There are other procedures and
criteria that might aid in choosing
the right model equations for  the
data set. They have been exten-
sively offered in the literature; we
shall critically review some of
them. First, they consist of exami-
nation and testing of the so-called
correlation coefficient (actually the
square of  it), R2. This coefficient
represents the portion of variation
in the set Yi explained by  model
function . A justification for this
approach relies on the inherent rela-
tionship between R2 and Fisher-
Snedecor, an F-statistic that in turn
is related to a χ2-statistic, both used
in formal early tests of the good-

ness of fit. The examination of the
correlation coefficient is  a  simple
and attractive procedure and no one
should complain about obtaining a
high  R2. However, it is not com-
monly recognized that serious ob-
jections can be raised to relying
solely, or very heavily, on this crite-
rion. Some comments seem impera-
tive:

1. It is always possible to increase
R2 by adding parameters. Thus
one should be cautious of func-
tions that must use many pa-
rameters to attain a high R2. Ad-
justments to the correlation co-
efficient have been proposed to
correct this defect. In particular,
one conventional proposition is
to use the sample statistic

(8)

instead of R2. Equation 8 penal-
izes functions with many pa-
rameters (especially when n is
small).

2. When one is bound to use a
transformation of Y (e.g., log Y,
etc.) (1), R2 measures and ex-
plains the variation of the trans-
formed function instead of the
original one. It is hard to com-
pare such different objects
straightforwardly. In this way
R2 loses its potential value.

3. If the main intention is not
merely a graphical repre-
sentation, calibration curve, or
interpolation formula, one
should be wary of choosing a
function with a high R2 but
many coefficients that either
have no physical interpretation
or have magnitudes or signs in
conflict with a theory.

Residual patterns

A study of the residual patterns
(graphical representation of the dif-
ferences between observed and fit-
ted data) sometimes assists in the
choice of a model equation. Resid-
ual patterns can be more useful than
R2 in suggesting improvements of

$Y

D R
p

n p
R2 2 2

1
1= −

− −
−e j

14 Current Separations 14:1 (1995)



the functional form. If they show a
determined pattern (e.g., linear,
quadratic, etc.), then the addition of
the corresponding function can be
considered. Residual patterns
sometimes reveal a nonhomo-
geneity in the sample that is not
recognized otherwise. Finally, a
supplementary study of autocorre-
lation in residual patterns answers
the fundamental questions of LLSQ
and NLSQ analysis, mentioned at
the beginning of this article, and re-
lated to the form of distribution of
errors, their randomness, etc. We
note that the residual patterns are of
little value and can be misleading if
the sample size is small.

The current separation
example

As an application of IN and PE cur-
vature measures in electrochemis-
try, let us consider the case of “cur-
rent separation” in a typical chrono-
amperometric experiment. Con-
sider the case of an irreversible
electrode process:

where kfh and kbh are heterogene-
ous rate constants of the electrode
process: kfh characterizes the reduc-
tion process; kbh characterizes the
oxidation process.

In the response to a potential
step, the total current, iT, comprises
at least three components (17): the
faradaic current iF and the charging
current iC, both decaying with time
t, and noise; that is,

(9)

where:

(10)

(11)

and , λ = kfh/Dox,
and T = RC.

The other symbols in these
equations have the following physi-
cal meanings:

Aelectrode area
initial concentration of the

oxidized form
Ccapacitance of the electro-

lytic cell, mainly the capacitance of
the electrode

Doxdiffusion coefficient of the
oxidized form

Rresistance of electrolytic cell,
mainly the uncompensated resis-
tance of the electrolyte

i1initial charging current

erfc(x) =

Equation 10 was derived by
Delahay and Strassner (18) and in-
dependently by Evans and Hush
(19). Total current given by equa-
tion 9 is represented by the data
points in F1 and F2. These data
were used in the NLSQ procedure
which provided the least square es-
timates of  i0, λ, i1,  and T. These
estimates allowed us to make a
“current separation” (i.e., to calcu-
late the theoretical, noise-free value
of iT, and its faradaic and charging
components) via equations 10 and
11. We used two sets of data here:
the full set of data pairs that con-
tained 61 experimental points, and a
subset of it (we removed the first
ten points (to t=10), and we consid-
ered every tenth point after  that).
Thus, the subset consisted of 11
points.

Our program also provides
standard deviations for the esti-
mated parameter (SD), Student’s t-
values, Box’s percentage bias, cor-
relation coefficients, and of course,
the maximum intrinsic curvature
measure, IN, along with the maxi-
mum parameter-effect curvature
measure, PE. All these values are
presented in T1 and T2, for the
original data set (61 points) and its
subset (11 points), respectively. For
comparison, the values of the curva-
ture radius, 1/(2 ) for F(4,7;
0.05), F(4,7;0.01) in the case of re-
duced data, and F(4,57;0.05),
F(4,57;0.01) for the full data set are
provided below each table.

The data in T1 and T2 show
that IN is acceptable but PE is not,
at both chosen probability levels,
for the 11-point set. For the 61-
point data set, however, both curva-
ture measures of nonlinearity are
acceptable; that is, they are less
than 1/(2 ), at the same prob-
ability levels. Thus, we may con-
clude that for this set of data, the
investigated model is “close to lin-
ear” in statistical behavior. Besides,
this result  clearly tells us that  al-
though the estimated values of all
four parameters for both data sets
do not differ significantly, the SD
values, t-values, and parameter cor-
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relation coefficients of the 11-point
set are meaningless from the statis-
tical point of view (20). Conse-
quently, all predictions and tests
grounded on these estimates are
statistically meaningless as well.

The results presented in T2
also inform us of the danger of re-
lying exclusively on calculations of
t-values. An apparently high, and
by some standards acceptable, t-
value tells us nothing about the real
behavior of the nonlinear estimate
and the true value of SD. As this
case shows, one can be easily mis-
led by considering the t-values
only.

For completeness, we note that
we have also experimented (results
not shown here) with a 51-point
data set (i.e., we eliminated just the
first 10 points from the original 61-
point data set). We obtained IN =
0.1257, acceptable at both α = 0.05
and α = 0.01 probability levels, and
PE = 4.8819, unacceptable at both
probability levels. Since one can re-
duce PE to any desired value  by

suitable reparametrization, this
finding could stimulate one to seek
a reparametrization. We did not,
however, exercise this point further.
Rather, we have learned from this
example that sometimes even 51
data points may not be sufficient to
assure desired statistical properties
for parameter estimates, and that
the region containing the first few
points is crucial for the type of
problem we consider in this paper.
Whether or not that region is acces-
sible in practice and to what extent
it is reliable is another important
and interesting question,  but it is
out of the scope of this article.

A clear bonus of application of
the NLSQ method and IN as well
as PE calculations, for the type of
problem we considered in this pa-
per, is a convenient, statistically
meaningful current separation pro-
cedure, as shown in F1 and F2.
This procedure can be generalized
and applied to similar problems.
The physicochemical parameters i0,
λ, kfh, Dox, C, and R are amenable

to further calculations, classifica-
tions, compilations, etc.

References

1. M. Karolczak, Current Separations
13(4):98–104.

2. The study of the behavior of least
square estimates in nonlinear mod-
els is a relatively new field. We
hope that the use of nomenclature,
ideas, and methodology presented
will assist the user in deciding
about the efficiency of a particular
model.

3. D.A. Ratkowsky, “Nonlinear Regres-
sion Modeling,” Marcel Dekker,
Inc., New York, 1983.

4. N.R. Draper and H. Smith, “Applied
Regression Analysis,” 2nd ed.,
Wiley, New York, 1981.

5. D.R. Sadler, “Numerical Methods for
Nonlinear Regression,” University
of Queensland Press, St. Lucia,
Quebec, 1975.

6. D.W. Marquardt, J. Soc. Ind. Appl.
Math. 2:431 (1963).

7. R. Fletcher and M.D.J. Powell,
Comput. J. 6:163 (1963).

8. W.H. Lawton and E.E. Sylvestre,
Technometrics 13:461 (1971).

9. E.M.L. Beale, J. R. Statis. Soc., Ser.
B. 22:41 (1960).

10. I. Guttman and D.A. Meeter, Tech-
nometrics 7:623 (1960).

11. M.J. Box, J. R. Statist. Soc., Ser. B.
33:171 (1971).

12. P.R. Gillis and D.A. Ratkowski,
Biometrix 34:191 (1978).

13. D.M. Bates and D.G. Watts, J. R.
Statist. Soc., Ser. B. 42:1 (1980).

14. P. Buisinger and G.H. Golub, Nu-
merische Math. 7:269 (1965).

15. M. Karolczak, unpublished results.

16. Student was the pseudonym of W.
Gosset, an English statistician of
the 19th century.

17. We limit ourselves here to the con-
sideration of semi-infinite and pla-
nar diffusion. We also neglect
other plausible complications, such
as transient currents during the
first ~10–9–10–5 s resulting from for-
mation of the double layer, and all
so-called coupling effects of
faradaic and charging currents.

18. P. Delahay and J.E. Strassner, J.
Am. Chem. Soc. 73:5218 (1951).

19. M.G. Evans and N.S. Hush, J.
Chim. Phys. 49:159 (1952).

20. This is so for the kind of problem
we deal with in this article. For
other models, the 11-point data
set/model combination may be
quite satisfactory regarding IN and
PE values, and thus linearity.

T2
The least square
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tions 9–11 for the
full 61-point data set.
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